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Abstract

This paper presents a new angular discretization scheme, FTn, of the ®nite volume method (FVM) in three-
dimensional radiative heat transfer. The FTn FVM is applied to absorbing, emitting and anisotropically scattering

media with variable optical thickness in a rectangular enclosure. Results show that the FTn FVM performs better
than the discrete ordinate method (DOM) and the FVM with Ny � Nf uniform angular discretization except near
the optically thick di�usion limit. The FTn FVM closely reproduces the reference solutions by the Monte Carlo
method for di�erent scattering phase functions and optical thicknesses. It also turns out that anisotropic scattering

has signi®cant in¯uence on radiative heat transfer with a symmetric boundary condition in a moderate optical
thickness range as well as with a nonsymmetric boundary condition. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

During the last decade there were numerous e�orts
to develop suitable numerical schemes for the radiative

transfer equation (RTE) [1]. For the problems com-
bined with convective heat transfer or turbulent react-
ing ¯ows the scheme should be compatible with those
for the mass, momentum and energy conservation

equations governing the ¯ow ®eld. Implementation of
inhomogeneity and anisotropic radiative scattering is
required for practical applications in a multidimen-

sional geometry. Among them the FVM has been con-

sidered one of the promising schemes for radiative

heat transfer with participating media. Since the work
of Raithby and Chui [2] the FVM has been extended
and applied to various radiative heat transfer prob-

lems. Chai et al. [3] presented the results in two- and
three-dimensional enclosures with participating media,
collimated incidence and heat generation. Chui et al.
[4] presented applications to cylindrical geometry and

the mapping for a two-dimensional axisymmetric
problem in terms of the radiation intensity in the azi-
muthal direction. The formulations of the FVM for a

nonorthogonal grid [5,6] and an unstructured mesh [7]
were also presented.
The discrete ordinate method (DOM) replaces the

integro di�erential RTE by a set of coupled di�erential
equations in the discrete ordinate directions.
Integration over the solid angle is replaced by a quad-
rature sum, which is a set of the discrete ordinate

directions and the corresponding weights. Although
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choice of the quadrature set may be arbitrary, accu-

racy of the DOM strongly depends on the quadrature
set [8,9]. On the other hand discretization of the FVM
is based on the same control volume technique as used

in computational ¯uid dynamics. The RTE is inte-
grated over both a discretized control volume and a
control angle, so that the discretized equation may

describe conservation of radiative energy within each
control volume and control angle. Angular discretiza-
tion of the FVM may be ¯exible as long as it properly

calculates the radiative heat ¯ux and the incident radi-
ation. A common form is the uniform angular discreti-
zation in which the polar and the azimuthal angles are
both uniformly subdivided. Chai et al. [3] tried nonuni-

form angular discretization to the problem of colli-
mated incidence by concentrating the angular grid near
the direction of the collimated incidence.

There have been several works reported on partici-
pating media with anisotropic scattering in a multidi-
mensional geometry. Kim and Lee [10,11] investigated

the e�ect of anisotropic scattering in a two-dimen-

sional rectangular enclosure by the DOM. Similar

work was reported in an axisymmetric geometry by
Jendoubi et al. [12]. Menguc and Viskanta [13] pre-
sented three-dimensional results with the delta-

Eddington scattering phase function by the P3 spheri-
cal harmonic method. Fiveland [14] and Truelove [15]
reported the results for the same case with Menguc et

al. [13] by the DOM. Chui et al. [4] presented the
results by the FVM with the delta-Eddington scatter-
ing phase function in an axisymmetric problem. Chai

et al. [3] and Kim and Baek [16] presented the results
in a two-dimensional and an axisymmetric geometry
respectively and compared them with those by Kim
and Lee [10,11] and Jendoubi et al. [12]. However

more validation works are currently required for aniso-
tropic scattering problems with general scattering
phase functions in a three-dimensional geometry. Here

the FTn FVM is applied to a three-dimensional rec-
tangular enclosure with anisotropically scattering
media with its results validated against the reference

solutions by the Monte Carlo method.

Nomenclature

A area
a weighting factor in the temperature distri-

bution

Cm coe�cient in Legendre series
D direction cosine integrated over the solid

angle

e unit direction vector
f weighting factor in the spatial discretiza-

tion scheme

G incident radiation
I radiation intensity
k absorption coe�cient
L length

N total number of angular discretization
Ny, Nf number of angular discretization in the

polar and the azimuthal angle

n unit vector normal to a surface
Pm Legendre polynomial
Q radiative heat ¯ux

r position vector
s unit vector in the direction of radiation

intensity

S source term in the RTE
T temperature
V volume
X, Y, Z space coordinates

Greek symbols
b extinction coe�cient
E emissivity

r re¯ectivity
s Stefan±Boltzmann constant
ss scattering coe�cient

F scattering phase function
O solid angle
o scattering albedo

Subscripts

b blackbody
P control volume index
w wall

X, Y, Z directions of X, Y and Z
x, y, z surface elements perpendicular to the

directions, X, Y and Z

0 reference quantity

Superscripts
e exact value
l control angle index

n iteration number
' incoming direction
� nondimensional quantity
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2. Finite volume method for radiative transfer

2.1. Radiative transfer equation

The RTE for absorbing, emitting and scattering
media is written as

�s � r�I�r,s� � ÿ�k� ss�I�r,s� � kIb�r�

� ss

4p

�
4p
I�r,s 0 �F�s 0,s� dO 0 �1�

where I(r,s) is the radiation intensity in the direction, s,
at the position, r. Ib(r) is the blackbody radiation
intensity. k and ss are the absorption and the scatter-

ing coe�cient respectively. F(s ',s) is the scattering
phase function, which is the fraction of radiative
energy scattered into the outgoing direction, s, from

the incoming direction, s '. The scattering phase func-
tion may be approximated by the Legendre series as

F�s 0,s� �
XM
m�0

CmPm�s 0 � s�: �2�

The boundary condition on the gray di�use wall
with the prescribed temperature is given as

Iw�s� � EwIbw � 1ÿ Ew

p

�
s 0 �nw<0

Iw�s�js 0 � nwj dO 0, �3�

where Iw(s) is the radiation intensity on the wall. Ibw
and Ew are the blackbody radiation intensity and the
emissivity of the wall. nw is the unit normal vector
toward the inside of the enclosure. The incident radi-

ation and the radiative heat ¯ux are given as

G�r� �
�
4p
I�r,s� dO �4�

Qi�r� �
�
4p
�ei � s�I�r,s� dO, �5�

where the subscript, i, represents the coordinate direc-

tions, X, Y and Z, in Fig. 1. ei is the unit vector in the
direction i.

2.2. Discretized equation

Integration of Eq. (1) over the control volume, VP,
and the control angle, Ol, gives�
Ol

�
AP

I�r,s��s � n� dA dO

�
�
Ol

�
VP

�ÿbI�r,s� � S�r,s�� dV dO, �6�

where b=k+ss and

S�r,s� � kIb�r� � �ss=4p�
�
4p
I�r,s0�F�s 0,s� dO0:

In an orthogonal grid Eq. (6) may be discretized as fol-
lows. Treatment of the scattering term is according to

Chai et al. [17].

AxjDl
Xj�I lxu ÿ I lxd� � AyjDl

Yj�I lyu ÿ I lyd� � AzjDl
Zj�I lzu ÿ I lzd�

� �ÿb l
mI

l
P � Sl

m,P�VPOl, �7�

where b l
m � bÿ �ss=4p�FllOl; Sl

m,P �
kIb,P � �ss=4p�

P
l 0 6�l I

l 0
PF

l 0lOl 0 ; Ax=DYDZ, Ay=DZDX,
Az=DXDY, VP=DXDYDZ; Dl

X �
�
Ol �s � eX� dO, Dl

Y ��
Ol �s � eY� dO, Dl

Z�
�
Ol �s � eZ� dO; Ol � �Ol dO and Fl 0 l ��

Ol 0
�
Ol F�s 0,s� dO dO 0=Ol 0Ol:

Ixd
l , Iyd

l and Izd
l are the radiation intensities on the

downstream surfaces in the direction, sl. Ixu
l , Iyu

l and
Izu
l are those on the upstream surfaces in the direction,

sl. The subscripts, x, y and z, denote the surface
elements perpendicular to the directions, X, Y and Z,
respectively. A weighted ®nite di�erencing scheme is

used to relate the radiation intensities on cell surfaces
with those at cell centers as

I lP � f lj I
l
jd � �1ÿ f lj �I lju, �8�

where fj
l is a weighting factor between 0.5 and 1. The

subscript, j, denotes the surface elements, x, y and z.

The ®nite di�erencing scheme with fj
l=0.5 is the dia-

mond scheme of the second order accuracy, while the
one with fj

l > 0.5 is of the ®rst order accuracy. The

Fig. 1. Geometry of the rectangular enclosure.
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®nite di�erencing scheme with fj
l < 1 does not guaran-

tee a positive value of the radiation intensity. Only the

step scheme with fj
l=1 ensures positivity, although it

su�ers from numerical di�usion. Lathrop [18] pro-
posed a scheme which guarantees positivity of the radi-

ation intensity with the weighting factors given in
terms of the spatial and angular grid. Here a positive
scheme is derived in three dimensions according to the

procedure of Lathrop [18] as

f lx � max

 
1ÿ AxjDl

Xj
2�AyjDl

Yj � AzjDl
Zj� � blmVPOl

,0:5

!
�9a�

f ly � max

 
1ÿ AyjDl

Yj
2�AzjDl

Zj � AxjDl
Xj� � blmVPOl

,0:5

!
�9b�

f lz � max

 
1ÿ AzjDl

Zj
2�AxjDl

Xj � AyjDl
Yj� � blmVPOl

,0:5

!
:

�9c�
Eq. (7) can be rearranged with Eqs. (9a)±(9c) as

alPI
l
P � alxI

l
xu � alyI

l
yu � alzI

l
zu � blP, �10�

where alP � AxjDl
Xj=f lx � AyjDl

Yj=f ly � AzjDl
Zj=f lz �

blmVPOl; alx � AxjDl
Xj=f lx ; aly � AyjDl

Yj=f ly ; alz �
AzjDl

Zj=f lz and blP � Sl
m,PVPOl:

The boundary condition for Eq. (10) is given as

I lw � EwIbw � 1ÿ Ew

p

X
Dl 0

w<0

I l
0

w jDl 0
wj, �11�

where Dl 0
w�

�
Ol 0 �nw � s 0 �dO 0:

Solution of Eq. (10) is an iterative procedure, since

the radiation intensities in di�erent control angles are
coupled through the source term, Sm,P

l , and the bound-
ary condition. The radiation intensity in each control
angle is obtained by an explicit marching sequence in

space. The incident radiation and the radiative heat
¯ux are obtained as

GP �
XN
l�1

I lPO
l �12�

Qi,r �
XN
l�1

I lrD
l
i �13�

where the subscript, r, represents the location of evalu-

ation. The detailed solution procedure may be found
elsewhere [14,19].

2.3. A new angular discretization scheme

The FVM may adopt any angular discretization

scheme that divides the 4p steradian solid angle into
an arbitrary number of control angles. It satis®es the
zeroth and the ®rst moment, i.e. properly calculates

the incident radiation and the radiative heat ¯ux, with
uniform radiation intensity in all directions. In an or-
thogonal grid it allows straightforward calculation of
the half range radiative heat ¯ux, which is usually

required to implement the boundary condition on the
wall. Chui et al. [5] and Murthy et al. [7] presented the
procedure to calculate the half range ¯ux in a non-

orthogonal grid and an unstructured mesh. The DOM
may have some di�culties in a nonorthogonal grid
since the quadrature set of the DOM is designed to

meet the half range ®rst moment only in an orthogonal
grid [8,9].
In the Ny � Nf uniform angular discretization

scheme of the FVM the polar and the azimuthal angles

are uniformly subdivided into Ny and Nf respectively
with the total of Ny � Nf control angles. It has been
successfully applied to one- and two-dimensional

problems [2,3], and gives the mapping for an axisym-
metric problem in terms of the radiation intensity in
the azimuthal direction [4]. Although it may be simple,

it results in highly nonuniform solid angles discretized
in three dimensions. Due to overall computational
load, e�cient angular discretization is more important

in three-dimensional problems than in one- and two-
dimensional ones. Kim and Huh [19] reported that sol-
ution of the FVM with Ny � Nf uniform angular dis-
cretization may depend on the coordinate system due

to nonsymmetric angular discretization in three dimen-
sions.
Here a new angular discretization scheme denoted as

FTn FVM is introduced. The polar angle is divided
uniformly into an even number, n, while the azimuthal
angle is uniformly divided into the numbers of the

sequence of 4, 8, 12, . . .2n ÿ 4, 2n, 2n, 2n ÿ 4, . . .8 and
4 in each level of the polar angle as shown in Fig. 2.
The increment should be a multiple of 4 to satisfy the
half range ¯ux condition. The total number of the con-

trol angles, N, is therefore given as n(n + 2), which is
same as the number of the discrete ordinate directions
of the Sn DOM. As shown in Fig. 3 the FTn FVM

results in much more uniform distribution of the dis-
cretized control angles in comparison with the FVM
with Ny � Nf uniform angular discretization. The FTn

FVM satis®es the zeroth moment, the ®rst moment
and the half range ¯ux condition in an orthogonal
grid.
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3. Test cases

The following test cases are de®ned for the three-
dimensional rectangular enclosure shown in Fig. 1.
The enclosure is ®lled with gray, absorbing, emitting
and scattering media with gray and di�use walls.

Results are given in nondimensional quantities such as
Qi
�=Qi/sT0

4 and G�=G/4sT0
4, where T0 is the refer-

ence temperature. The optical coe�cients, k, ss and b,
are nondimensionalized as k�=kL0, ss

�=ssL0 and

b�=bL0. The scattering phase functions used in the
anisotropic scattering problems are those given by
Kim et al. [10] and shown in Fig. 4. The F1 and F2

are the forward scattering phase functions while the B1
and B2 are the backward scattering ones. Convergence
of the solution is checked by the condition

max

 
jGn

P ÿ Gnÿ1
P j

Gn
P

!
< 10ÿ5, �14�

where the superscript, n, is an iteration number.

3.1. Purely absorbing/emitting medium

The enclosure with black and cold walls at 0 K is

®lled with purely absorbing/emitting medium with the
temperature distribution given as

T�X,Y,Z � � aT0�1ÿ r2��1ÿ p2� � �1ÿ a�T0,

r �
���
2
p
��Y=L0 ÿ 1=2�2 � �Z=L0 ÿ 1=2�2�1=2

p � 2X=LX ÿ 1, �15�

where a is the weighting factor to describe nonunifor-
mity of the temperature distribution. L0 is the charac-

teristic length equal to LY and LZ. The parabolic
pro®le in Eq. (15) has the maximum value, T0, at the
center of the enclosure and the minimum value,

(1ÿa )T0, on all the edges and the walls 1 and 2. Here
the RTE becomes a ®rst order di�erential equation
with no coupling among di�erent propagating direc-
tions and may be integrated as

Fig. 3. Comparison of the discretized solid angles between the

FTn FVM and the Ny � Nf FVM.

Fig. 2. Angular discretization scheme of the FTn FVM (Ol:

solid angle of the lth element, sl: unit direction vector corre-

sponding to Ol ).

Fig. 4. Scattering phase functions by the Legendre series (F1

and F2: forward scattering phase functions, B1 and B2: back-

ward scattering phase functions).
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I�r,s� � k

�s
0

Ib�rÿ vs�eÿkv dv, �16�

where s is the distance in the direction, s, from the

wall. The exact solutions for the radiative heat ¯ux are
obtained by numerical integration of Eqs. (5) and (16).
The solutions of the FVM and DOM are obtained

with the radiation intensity given by Eq. (16) to inves-
tigate accuracy of the angular discretization schemes
without the error due to spatial discretization.

3.2. Ideal furnace

This ideal furnace has already been studied by sev-

eral investigators [3,13±15]. It has a uniform heat
source, q

.
=5 kW/m3, and is ®lled with absorbing and

emitting media. The absorption coe�cient, k, is 0.5

mÿ1. Its geometry and boundary conditions are given
as follows.

LX=2 m LY=2 m LZ=4 m at Z = 0,
T = 1200 K Ew=0.85, at Z=L,
T = 400 K Ew=0.70,
otherwise T = 900 K Ew=0.70.

Since the RTE is coupled with the energy equation

given as

_q � k

�
4pIb�r� ÿ

�
4p
I�r,s� dO

�
, �17�

the solution is obtained by substituting Eq. (17) into
Eq. (1). The furnace is divided into 25 � 25 � 25 con-
trol volumes.

3.3. Anisotropic scattering problems

3.3.1. Purely scattering medium with di�use incidence

Ð nonsymmetric boundary condition
Radiative energy is emitted only from wall 6 and

transferred, through purely scattering medium, to the

other walls. The enclosure is cubical with the side
length, L0. The scattering coe�cient, ss

�, is equal to
one. The temperature of wall 6 is T0 while the tem-

perature of the other walls is 0 K. All the walls of the
enclosure are black. The enclosure is divided into
25 � 25 � 25 control volumes. The results are com-
pared with the Monte Carlo solutions [1,20], which are

obtained by dividing wall 6 into 25 � 25 subsurfaces
and emitting 106 energy bundles from each subsurface.

3.3.2. Isothermal medium with cold di�use walls Ð
symmetric boundary condition
The cubical enclosure with the side length, L0, is

®lled with the isothermal medium at the temperature,
T0, which absorbs, emits and scatters anisotropically.
The walls of the enclosure are cold at 0 K and black

except for the case in Fig. 9. The enclosure is divided
into 25 � 25 � 25 control volumes. The Monte Carlo

solutions are obtained by dividing the enclosure into
15 � 15 � 15 subvolumes and emitting 106 energy
bundles for b� equal to 1 and 2 and 3 � 106 energy

bundles for b� equal to 10 from each subvolume.

4. Results

4.1. Purely absorbing/emitting medium

Table 1 lists the average relative errors of the FTn

FVM, Ny � Nf FVM and Sn DOM for varying optical
thickness, temperature pro®le and aspect ratio. The
average relative error is de®ned as

E � 1

P

X
r

jQZ,r ÿQe
Z,rj

Qe
Z,r

, �18�

where P is the total number of the evaluation lo-
cations. QZ,r

e is the exact solution at the location, r. Ny

and Nf are equal to 2ny and 4nf, where ny and nf are
positive integers. Note that the FTn FVM is the most
accurate in most cases in Table 1 except in the opti-

cally thick di�usion limit. The FVMs are more accu-
rate than the Sn DOM except in the optically thick
case of k� equal to 10. In the optically thick di�usion
limit the radiation intensity may be approximated as

the sum of the incident radiation and the radiative
heat ¯ux vector projected into the direction vector, s.
The FVM in general does not satisfy the second

moment condition given as

XN
l�1

�
Dl

i

Ol

�2

Ol � 4

3
p, �19�

where the subscript, i, denotes the coordinate direc-

tions, X, Y and Z [8,9]. The quadrature set of the Sn
DOM, higher than S4, is designed to meet this con-
dition in the di�usion limit.

4.2. Ideal furnace

Figure 5 shows the radiative heat ¯ux on walls 5
and 6 of the ideal furnace. The solutions of the FTn

FVM are compared with those of the 4 � 20 FVM, the
S8 DOM and the zone method. The results of the zone
method and the S8 DOM are taken from Truelove [15]

and Fiveland [14] respectively. The FT8 FVM and S8
DOM show comparable accuracy with their solutions
close to those of the zone method. The FT6 FVM

gives a more accurate solution than the 4 � 20 FVM,
although the number of angular discretization of the
FT6 FVM is less than that of 4 � 20 FVM. The 4 � 20
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FVM was previously used by Chai et al. [3] for the
same case.
The FT6 and FT8 FVMs needed 13 and 14 iterations

respectively to reach a converged solution satisfying

the criterion in Eq. (14). The 4 � 20 FVM needed the
same number of iterations as the FT8 FVM.

4.3. Anisotropic scattering problems

4.3.1. Purely scattering medium with di�use incidence
Ð nonsymmetric boundary condition

Figure 6 shows the radiative heat ¯ux, QZ
�, along

the centerline of the enclosure, (L0/2, L0/2, Z ), with
isotropic scattering. Note that the solutions of the FT8

FVM and S8 DOM show some oscillation due to the
inaccuracy in angular approximation. The results of
the 10 � 12, and FT10 FVMs are close to the Monte

Carlo solution in Fig. 6. Pessoa-Filho and Thynell [22]
reported that discontinuity in the radiation intensity
exists in the angular domain for a similar two-dimen-
sional case obtained by increasing the aspect ratio, LX/

L0, to in®nity. Discontinuity in the radiation intensity
may exist not only on the wall but also inside the
enclosure when a highly nonsymmetric boundary con-

dition is imposed. The ray e�ect tends to become more
pronounced when there is discontinuity or a sharp
change in the radiation intensity in the angular domain

[21,22].
Figure 7 shows the e�ect of anisotropic scattering

Table 1

Average relative errors for the nondimensional radiative heat ¯ux with purely absorbing/emitting media in a rectangular enclosure

Scheme Total number of angular discretization LX/L0 Errors (%)

a= 0.5 a= 1

k �=0.1 k �=1 k �=10 k �=0.1 k �=1 k �=10

FT4 FVM 24 1 1.808 1.280 2.055 5.984 5.581 9.625

FT6 FVM 48 0.376 0.559 0.896 0.738 1.289 3.817

FT8 FVM 80 0.581 0.358 0.489 0.319 0.285 2.192

2 � 12 FVM 24 20.177 17.170 5.817 37.845 35.217 18.589

4 � 12 FVM 48 2.563 3.146 2.132 5.623 6.546 7.793

6 � 8 FVM 48 1.260 0.843 0.891 2.507 2.214 3.420

4 � 20 FVM 80 2.864 3.406 2.164 6.124 6.941 7.651

10 � 8 FVM 80 1.488 0.879 0.262 1.778 1.176 1.555

S4 DOM 24 7.438 5.832 0.742 18.300 16.530 8.026

S6 DOM 48 2.842 1.880 0.156 7.007 6.358 2.666

S8 DOM 80 1.977 1.396 0.053 6.067 5.236 1.224

FT4 FVM 24 3 2.040 1.694 1.847 16.906 14.768 8.678

FT6 FVM 48 0.561 0.388 0.815 6.673 5.610 3.651

FT8 FVM 80 0.663 0.124 0.453 2.308 1.907 2.051

2 � 12 FVM 24 9.392 8.394 5.534 32.761 30.217 19.792

4 � 12 FVM 48 3.031 2.160 2.001 6.664 6.323 7.647

6 � 8 FVM 48 2.549 1.220 0.815 12.973 9.719 3.602

4 � 20 FVM 80 3.783 2.549 2.037 11.505 8.435 7.565

10 � 8 FVM 80 2.285 0.926 0.227 10.507 7.179 1.556

S4 DOM 24 2.285 1.747 0.222 12.823 11.309 4.594

S6 DOM 48 2.039 1.418 0.044 6.964 7.309 1.972

S8 DOM 80 4.572 2.746 0.017 9.166 7.378 0.983

Fig. 5. Radiative heat ¯uxes on the walls of the ideal furnace.
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on the radiative heat ¯ux. The radiative heat ¯ux, QZ
�,

is obtained by the FT10 FVM and the Monte Carlo

method for di�erent scattering phase functions. Note
that the results of the FT10 FVM closely follow the
Monte Carlo solutions for all the scattering phase
functions considered. The forward scattering media

with the phase functions, F1 and F2, transfer more
radiative energy through the medium than the isotro-
pic and the backward scattering media with the phase

functions, B1 and B2. As the aspect ratio, LX/L0,
increases, the solution approaches the two-dimensional

solutions by Kim and Lee [10] and Pessoa-Filho and
Thynell [22].

4.3.2. Isothermal medium with cold di�use walls Ð
symmetric boundary condition

Figure 8 shows the radiative heat ¯ux, QZ
�, along

the line, (X, L0/2, L0), with isotropic scattering. The
extinction coe�cient, b�, and the scattering albedo,

o=s�/b�, are 1 and 0.5 respectively. The results of the
FT6 and FT8 FVMs are compared with those of the
Monte Carlo method, the 10 � 8 FVM and the S8
DOM. The FT8 FVM gives the most accurate solution
in agreement with the reference solution by the Monte
Carlo method. Note that all the FVMs give more accu-
rate solutions than the S8 DOM in Fig. 8.

Figure 9 shows the incident radiation along the line,
(X, L0/2, L0/2), for di�erent scattering phase functions
and two wall re¯ectivities, 0 and 0.5. The results are

obtained by the FT8 FVM. The walls are cold at 0 K
and re¯ect radiation di�usely. The extinction coe�-
cient, b�, and the scattering albedo, o, are 2 and 0.5

respectively. The FT8 FVM closely reproduces the
reference solutions by the Monte Carlo method for all
the scattering phase functions and wall re¯ectivities

considered. Note that the incident radiation shows
strong dependence on the scattering phase function.
The maximum di�erence occurs at the location of the
maximum incident radiation near the center of the

enclosure. The forward scattering media give lower
incident radiation than the isotropic scattering media,
which again give lower incident radiation than the

backward scattering media. The backward scattering
media tends to block transfer of radiative energy to

Fig. 6. Nondimensional radiative heat ¯ux for purely scatter-

ing medium with isotropic scattering subject to di�use radi-

ation from wall 6 of the cubical enclosure (ss
�=1, o=1).

Fig. 7. E�ect of anisotropic scattering on the radiative heat

¯ux for purely scattering medium subject to di�use radiation

from wall 6 of the cubical enclosure (ss
�=1, o=1).

Fig. 8. Nondimensional radiative heat ¯ux for isothermal, iso-

tropically scattering medium in the cubical enclosure with

black and cold walls (b �=1, o=0.5).
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the walls and absorb more energy. Note that the inci-
dent radiation increases and becomes ¯atter in space
as the re¯ectivity increases in Fig. 9. The di�erence

among the solutions with di�erent scattering phase
functions also decreases as the wall re¯ectivity
increases, because di�use re¯ection on the walls tends

to compensate for the e�ect of anisotropic scattering.
Figures 10 and 11 show the e�ect of anisotropic

scattering on the radiative heat ¯ux and incident radi-

ation as the optical thickness varies. The extinction

coe�cients, b�, are 1, 2 and 10, while the scattering
albedo, o, is ®xed as 0.5. The results are obtained by

the FT8 FVM as in Fig. 9. Figure 10 shows the radia-
tive heat ¯ux, QZ

�, along the line, (X, L0/2, L0). The
e�ect of anisotropic scattering is negligible for b

�
equal

to 1, since it corresponds to an optically thin case
without much scattering occurring. The radiative heat
¯ux shows some variation of di�erent scattering phase

functions with b� equal to 2. The forward scattering
media result in the radiative heat ¯uxes slightly higher
than those for the isotropic and backward scattering

media. The e�ect of anisotropic scattering results in
signi®cant variation in the radiative heat ¯ux for the
extinction coe�cient, b�, equal to 10. Figure 11 shows
the incident radiation along the line, (X, L0/2, L0/2).

Note that anisotropic scattering a�ects the incident
radiation at lower optical thickness than for the radia-
tive heat ¯ux in Fig. 10. It is because the scattered

radiation contributes to increasing the incident radi-
ation, while it may increase or decrease the radiative
heat ¯ux according to the propagation direction after

scattering. There may be a signi®cant e�ect of aniso-
tropic scattering for the isothermal media with a sym-
metric boundary condition and a moderate optical

thickness. The e�ect of anisotropic scattering was
reported to be negligible for isothermal media in a
two-dimensional rectangular enclosure [10] and axi-
symmetric geometry [12].

5. Concluding remarks

The FVM with a new angular discretization scheme,

Fig. 11. E�ect of anisotropic scattering on the incident radi-

ation for di�erent optical thicknesses (o=0.5, Monte Carlo

q: isotropic, r: F1, t: F2, r: B1, w: B2).

Fig. 9. E�ect of anisotropic scattering and wall re¯ectivity on

the incident radiation for isothermal medium in the cubical

enclosure with di�use and cold walls (b �=2, o=0.5, Monte

Carlo q: isotropic, r: F1, t: F2, r: B1, w: B2).

Fig. 10. E�ect of anisotropic scattering on the radiative heat

¯ux for di�erent optical thicknesses (o=0.5, Monte Carlo q:

isotropic, r: F1, t: F2, r: B1, w: B2).
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FTn FVM, is presented and applied to a three-dimen-
sional rectangular enclosure with absorbing, emitting

and anisotropically scattering media. The positive
spatial discretization procedure of Lathrop is extended
to ensure positive radiation intensity in three dimen-

sions. Results show that the FTn FVM gives a more
accurate solution than the DOM and the FVM with
Ny � Nf uniform angular discretization with the same

total number of angular discretization except in the
optically thick di�usion limit. It is because the FVM
does not satisfy the second moment condition to be an

accurate formulation in the di�usion limit. The FTn

FVM reduces the ray e�ect and the error due to non-
symmetric angular discretization under rotation of the
axes in three dimensions. The e�ect of anisotropic scat-

tering is also investigated with the scattering phase
functions given by the ®nite series Legendre poly-
nomials. The solutions of the FTn FVM show good

agreement with the reference solutions by the Monte
Carlo method for di�erent scattering phase functions
and optical thicknesses. Anisotropic scattering has a

signi®cant e�ect not only with a nonsymmetric bound-
ary condition but also in the isothermal media of a
moderate optical thickness and scattering albedo with

a symmetric boundary condition.

References

[1] M.F. Modest, Radiative Heat Transfer, McGraw-Hill

Inc, 1993.

[2] G.D. Raithby, E.H. Chui, A ®nite-volume method for

predicting a radiant heat transfer in enclosures with par-

ticipating media, ASME J. Heat Transfer 112 (1990)

415±423.

[3] J.C. Chai, H.S. Lee, S.V. Patankar, Finite volume

method for radiation heat transfer, J. Thermophys.

Heat Transfer 8 (1994) 419±425.

[4] E.H. Chui, G.D. Raithby, P.M.J. Hughes, Prediction of

radiative transfer in cylindrical enclosures with the ®nite

volume method, J. Thermophys. Heat Transfer 6 (4)

(1992) 605±611.

[5] E.H. Chui, G.D. Raithby, Computation of radiant heat

transfer on a nonorthogonal mesh using the ®nite

volume method, Numerical Heat Transfer Pt. B 23

(1993) 269±288.

[6] J.C. Chai, S. Parthasarathy, H.S. Lee, S.V. Patankar. A

®nite-volume radiation heat transfer procedure for ir-

regular geometries. AIAA Paper 94-2095, June 1994.

[7] J.Y. Murthy, S.R. Mathur, Finite volume method for

radiative heat transfer using unstructured meshes, J.

Thermophys. Heat Transfer 12 (3) (1998) 313±321.

[8] K.D. Lathrop, B.G. Carlson. Discrete-ordinates angular

quadrature of the neutron transport equation. Technical

Information Series Report LASL-3186, Los Alamos

Scienti®c Laboratory, (1965).

[9] W.A. Fiveland, The selection of discrete ordinate quad-

rature sets for anisotropic scattering, Fundam.

Radiation Heat Transfer HTD-160 (1991) 89±96.

[10] T.K. Kim, H.S. Lee, E�ect of anisotropic scattering on

radiative heat transfer in two-dimensional rectangular

enclosures, Int. J. Heat Mass Transfer 31 (8) (1988)

1711±1721.

[11] T.K. Kim, H.S. Lee, Radiative heat transfer in two-

dimensional anisotropic scattering media with colli-

mated incidence, J. Quant. Spectrosc. Radiat. Transfer

42 (3) (1989) 225±238.

[12] S. Jendoubi, H.S. Lee, T.K. Kim, Discrete ordinates sol-

utions for radiatively participating media in a cylindrical

enclosure, J. Thermophys. Heat transfer 7 (1993) 213±

219.

[13] M.P. Menguc, R. Viskanta, Radiative transfer in three-

dimensional rectangular enclosures containing inhomo-

geneous, anisotropically scattering media, J. Quant.

Spectrosc. Radiat. Transfer 33 (6) (1985) 533±549.

[14] W.A. Fiveland, Three-dimensional radiative heat trans-

fer solutions by the discrete ordinates method, J.

Thermophys. Heat Transfer 2 (4) (1988) 309±316.

[15] J.S. Truelove, Three-dimensional radiation in absorb-

ing±emitting±scattering media using the discrete-ordi-

nates approximation, J. Quant. Spectrosc. Radiat.

Transfer 39 (1988) 27±31.

[16] M.Y. Kim, S.W. Baek, Analysis of radiative transfer in

cylindrical enclosures using the ®nite volume method, J.

Thermophys. Heat Transfer 11 (2) (1997) 246±252.

[17] J.C. Chai, H.S. Lee, S.V. Patankar, Improved treatment

of scattering using the discrete ordinates method,

ASME J. Heat Transfer 116 (1994) 260±263.

[18] K.D. Lathrop, Spatial di�erencing of the transport

equation: positivity vs. accuracy, J. Computational

Phys. 4 (1969) 475±498.

[19] S.H. Kim, K.Y. Huh. Assessment of the ®nite volume

method and the discrete ordinate method in a three-

dimensional rectangular enclosure. Numerical Heat

Transfer Pt. B 36 (1999) 85±112.

[20] D.V. Walters, R.O. Buckius, in: Monte Carlo methods

for radiative heat transfer in scattering media, Annual

Review of Heat Transfer, 5, Hemisphere, New York,

1992.

[21] J.C. Chai, H.S. Lee, S.V. Patankar, Ray e�ect and false

scattering in the discrete ordinates method, Numerical

Heat Transfer Pt. B 24 (1993) 373±389.

[22] J.B. Pessoa-Filho, S.T. Thynell, An approximate sol-

ution to radiative transfer in two-dimensional rectangu-

lar enclosures, ASME J. Heat Transfer 119 (1997) 738±

745.

S.H. Kim, K.Y. Huh / Int. J. Heat Mass Transfer 43 (2000) 1233±12421242


